In this lesson, you will create a smaller current from a bigger current with parallel resistors.

Resistors in parallel

Current Divider

Voltage and parallel resistors

When two resistors, R1 and R2, are connected in parallel, the voltages across the resistors are identical.

\[V = V_{1} = V_{2}\]

Current and parallel resistors

Each current thorough a resistor is:

\[I_{1} = { V_{1} \over R_{1} } = { V \over R_{1} }\] \[I_{2} = { V_{2} \over R_{2} } = { V \over R_{2} }\]

For example, when $ V = 10 V $, $ R_{1} = 10 ohm $, and $ R_{2} = 20 ohm $,

\[I_{1} = { V \over R_{1} } = { 10 V \over 10 ohm } = 1 (A)\] \[I_{2} = { V \over R_{2} } = { 10 V \over 20 ohm } = 0.5 (A)\]

When $ R_{1} = R_{2} $, the same amount of current flows.

\[I_{1} = { V_{1} \over R_{1} } = { V \over R_{1} }\] \[I_{2} = { V_{2} \over R_{2} } = { V \over R_{1} }\] \[I_{1} = I_{2}\]

The total current is:

\[I_{total} = I_{1} + I_{2} = { V \over R_{1} } + { V \over R_{2} }\] \[I_{total} = I_{1} + I_{2} = 1 A + 0.5 A = 1.5 (A)\]

Resistance and parallel resistors

The total resistance is:

\[R_{total} = { V \over I } = { V \over I_{total} } = { V \over { { V \over R_{1} } + { V \over R_{2} } } }\] \[{ R_{total} } = { 1 \over { 1 \over R_{1} } + { 1 \over R_{2} } }\] \[{ R_{total} } = { V \over I_{total} } = { 1 \over { 1 \over 10 ohm } + { 1 \over 20 ohm } } = { 10 \over 1.5 } \approx 6.666 (ohm)\]

Quick formulas

With $ N $ resistors:

\[{ R_{total} } = { 1 \over { 1 \over R_{1} } + { 1 \over R_{2} } + \dots + { 1 \over R_{N} } }\]

With two resistors:

\[R_{total} = { 1 \over { 1 \over R_{1} } + { 1 \over R_{2} } } = { { R_{1} \times R_{2} } \over { R_{1} + R_{2} } }\]

Other lessons

Other lessons in Electronics Basic Course:

  1. Simple Circuits Measurements Fundamentals
  2. Multimeter
  3. Ohm's Law
  4. LED and Vf
  5. Voltage Divider
  6. Current Divider This lesson
  7. Series and Parallel resistors
  8. Pulse Width Modulation
  9. Traffic signal